

The Fidelity of Visual Long-term Memory

Talia Konkle

George Alvarez

Tim Brady

Vision Sciences Lab 2.0

Aude Oliva

Role of Memory in Vision

Role of Memory in Vision

Determines What You See Things "As"

Role of Memory in Vision

Basis for Inference About the World

Role of Memory in Vision

Interacts With Perceptual Organization

Vision Provides Many Inputs to Potentially Remember

Vision Provides Many Inputs to Potentially Remember

2-3 Eye Movements Per Second

Vision Provides Many Inputs to Potentially Remember

2-3 Eye Movements Per Second

Vision Provides Many Inputs to Potentially Remember

2-3 Eye Movements Per Second

Vision Provides Many Inputs to Potentially Remember

Fixating Many Different Objects

Vision Provides Many Inputs to Potentially Remember

Fixating Many Different Objects

Vision Provides Many Inputs to Potentially Remember

Fixating Many Different Objects

Vision Provides Many Inputs to Potentially Remember

What Should a Memory System do With This?

Remember them all sparsely?

Remember few with high detail?

Remember them ALL with high detail?

Remember them ALL with selective details? If so, which details?

The Broad Motivation

Understand Capacity and Fidelity of LTM
LTM informs "online" visual perception
Understanding these aspects of LTM is integral to understanding "online" visual processing

How visual perception interfaces with LTM
NOT going to answer these questions today

The Broad Motivation

Understand Capacity and Fidelity of LTM

LTM informs "online" visual perception
Understanding these aspects of LTM is integral to understanding "online" visual processing

How visual perception interfaces with LTM
NOT going to answer these questions today

Outline

1. Detailed Memory for Thousands of Objects

2 Comparing the Fidelity of Perception, Shortterm Memory, \& Long-term Memory
3. Preliminary Insights into the Temporal Dynamics of Encoding

Outline

1. Detailed Memory for Thousands of Objects

Comparing the Fidelity of Perception, Shortterm Memory, \& Long-term Memory

Preliminary Insights into the Temporal Dynamics of Encoding

1. Detailed Memory for Thousands of Objects

How Much Can You Remember About What You See?
 Thousands of Objects

Standing (1973)
 10,000 Images
 92\% Recognition

A massive storage capacity, but what's remembered?

Standing's Image Set

According to Standing

"Basically, my recollection is that we just separated the pictures into distinct thematic categories: e.g. cars, animals, single-person, 2people, plants, etc.) Only a few slides were selected which fell into each category, and they were visually distinct."

Standing's Image Set

According to Standing

"Basically, my recollection is that we just separated the pictures into distinct thematic categories: e.g. cars, animals, single-person, 2people, plants, etc.) Only a few slides were selected which fell into each category, and they were visually distinct."

Could Span A Huge Range of Conceptual Space

"Old" or "New"?

"Old" or "New"?

But What Did You Remember?

Highly Detailed

Sparse Details

Dogs
Playing Cards
"Gist" Only

Vary Similarity to Probe Contents of Memory

Exactly which wedding did you see?

Experiment I

Showed observers 2500 unique objects
I at a time, 3 seconds each
800 ms blank between items
Study session lasted about 5.5 hours
N-back task to maintain focus
Followed by 300 2-alternative forced choice tests

Experiment I - Subject Instructions

Completely different objects...

Different instance of the same kind of object...

Different state of the same object...

Experiment I - Conditions Varying In Similarity

Completely
different objects...

"Novel"

Different instance of the same kind of object...

"Exemplar" More Details

Different state of the same object...

"State"
Even More Details

Experiment I - Demonstration

E

\cap

\&

R

10 Minutes Later...

$$
0
$$

30 Minutes Later...

而

1 Hour Later...

2 Hours Later...

1

4 Hours Later...

5:30 Hours Later...

Experiment I - Results

Experiment I - Results, Repetition Detection

High Detection Rate, Even at 1024-back!

Experiment I - Results, Recognition Performance

Experiment I - Results, Recognition Performance

Experiment I - Results, Recognition Performance

Experiment I - Results, Recognition Performance

Experiment I - Results, Recognition Performance

Experiment I - Results, Recognition Performance

Experiment I - Results, Recognition Performance

Summary \& Interim Conclusions

LTM can hold a massive number of items
The fidelity of storage is high
Much higher than previously believed
But exactly how accurate are these representations?

How would it compare to the fidelity of perception (upper bound) or short-term memory (upper bound for memory)

Outline

1. Detailed Memory for Thousands of Objects

2 Comparing the Fidelity of Perception, Shortterm Memory, \& Long-term Memory
3. Preliminary Insights into the Temporal Dynamics of Encoding

Outline

1. Detailed Memory for Thousands of Objects

2 Comparing the Fidelity of Perception, Shortterm Memory, \& Long-term Memory

3 Preliminary Insights into the Temporal Dynamics of Encoding
2. Comparing the Fidelity of Perception, Short-term Memory, \& Long-term Memory

Qualitative Manipulation of "Required Fidelity"

Completely
different objects...

"Novel"

Different instance of the same kind of object...

"Exemplar"
More Details

Different state of the same object...

"State"
Even More Details

A Continuous Measure of Fidelity

How Well Can Observers Perceive and Remember the Color of Objects?

A Continuous Measure of Fidelity

Typically Assessed With Color Patches...

But you cannot do the long-term memory experiment with color patches

A Continuous Measure of Fidelity

So we're going to use real objects...

A Continuous Measure of Fidelity

A Continuous Measure of Fidelity

Perceptual Task

Perceptual Task

A Continuous Measure of Fidelity

Error = Angular Difference Between

Target Hue and Color Setting

$$
06
$$

-

$$
\bullet
$$

*

$$
3
$$

Long-term Memory Task, Remember 180 Items

Long-term Memory Task, Remember 180 Items
...About 20 Minutes Later

Long-term Memory Task, Remember 180 Items

Long-term Memory Task, Remember 180 Items

tested on all I80 objects

Mixture Modeling Analysis

Introduced by Zhang \& Luck (2008)

Mixture Modeling Analysis

Observed Data

Gaussian (von mises)

Uniform

Experiment 2: A Continuous Measure of Fidelity

Experiment 2: A Continuous Measure of Fidelity

Perceptual Task: Group Model Fit

Experiment 2: A Continuous Measure of Fidelity

Short-term Memory Task: Group Model Fit

Experiment 2: A Continuous Measure of Fidelity

Long-term Memory Task: Group Model Fit

Experiment 2: A Continuous Measure of Fidelity

Summary Group Model Fits

Mixture Modeling Analysis

Observed Data

Gaussian (von mises)

Uniform

Experiment 2: A Continuous Measure of Fidelity

Summary Group Model Fits

Likelihood Of Random Guessing

Much higher likelihood of random

 guessing in long-term memory condition

Estimate of Memory Precision

Short-term and Long-term Memory Have Comparable Fidelity!

Experiment 3: Continuous Report + Yes/No Response

Long-term memory condition only. Same as E2, except half the test items are foils (items that were never seen).

For each test item, subjects report the remembered color, guessing if they haven't seen the item.

Then subjects report whether they remember seeing the test item ("Yes" or "No").

Experiment 3: Continuous Report + Yes/No Response

Sanity Check!: Model Fit Correct Rejections (82\%)

Experiment 3: Continuous Report + Yes/No Response

Sanity Check!: Model Fit False Alarms (18\%)

Experiment 3: Continuous Report + Yes/No Response

Model Fit Misses (34\%)

Experiment 3: Continuous Report + Yes/No Response

Model Fit Hits (66\%)

Likelihood of Random Guessing

If subjects only guess the color if they forget the item, You would expect guessing rate to disappear for HITS

Likelihood of Random Guessing

or at least drop to the level of the false alarm rate...

Likelihood of Random Guessing

Same Guessing Rate!

Observers remember the items, but forget the colors

Estimate of Memory Precision

Not much change in the precision, if anything better

Summary \& Interim Conclusions

Combined continuous report \& mixture modeling method enables estimation of
I. Standard deviation as a measure of memory precision
2. Probability of random guessing

Perception vs. STM, precipitous increase in standard deviation

STM vs. LTM: Relatively high probability of random guessing of color in LTM (even when the item is remembered)

However, when the color is remembered, it is comparable to the fidelity of short-term memory

Outline

1. Detailed Memory for Thousands of Objects

2 Comparing the Fidelity of Perception, Shortterm Memory, \& Long-term Memory
3. Preliminary Insights into the Temporal Dynamics of Encoding

Outline

1. Detailed Memory for Thousands of Objects

2 Comparing the Fidelity of Perception, Shortterm Memory, \& Long-term Memory
3. Preliminary Insights into the Temporal Dynamics of Encoding
3.

Preliminary Insights into the Temporal Dynamics of Encoding

Experiment 4: Effect of Encoding Time on Detection of Changes at Category, Exemplar, and State Level

Short-term memory, change detection task I.2,6, or 18 second presentation of 6 objects 3 Conditions: novel, exemplar, state

Experiment 4: Effect of Encoding Time on Detection of Changes at Category, Exemplar, and State Level

It takes time to get the details

Experiment 4: Effect of Encoding Time on Detection of Changes at Category, Exemplar, and State Level

Maybe some changes require more precise representations, and precision increases with time

Experiment 4: Effect of Encoding Time on Detection of Changes at Category, Exemplar, and State Level

Or maybe this is about a hierarchical order of encoding, from category-level features, to exemplar-level features, to state-level features...

Experiment 5: Effect of Encoding Time on Encoding Color (Using Continuous Report)

Short-term memory, continuous report 20, 40, 60, 80, 100, I20, 500 ms presentation 3 color patches, masked

Brief Presentation

Mask

Color Setting

Experiment 5: Effect of Encoding Time on Encoding Color (Using Continuous Report)

Experiment 5: Effect of Encoding Time on Encoding Color (Using Continuous Report)

Probability of Random Guessing

Effect of Encoding Time on Encoding Color In Long-term Memory

Experiment 2 3 Seconds/Item LTM

Experiment 6 | Second/Item LTM

Estimate of Memory Precision

Estimate of Memory Precision

Effect of Encoding Time on Encoding Color In Long-term Memory

Experiment 2 3 Seconds/Item LTM

Likelihood of Random Guessing

Experiment 6

| Second/Item LTM

Likelihood of Random Guessing

Summary \& Interim Conclusions

It takes time to encode the details
After the first 120 ms , little benefit of additional time on encoding color

Suggests benefits of additional time after one second is not due to improved fidelity on any given feature dimension
Instead, additional time me knowledge-guided encodir到70 "Encoding of informative c

Take Home Points

Visual Long-term Memory has a much higher fidelity than previously demonstrated or believed, comparable to the fidelity of short-term memory.

There is a high rate of randomly guessing in LTM, suggesting either catastrophic retrieval failure, interference, or decay.

This is the case, even when observers appear to remember the items themselves. This "binding failure" in LTM may reflect the non-integral nature of color for these stimuli.

Precision increases rapidly over time, suggesting benefits of time beyond 500 ms are related to searching for/encoding additional features (possibly in a hierarchical progression).

Thank You.

tkonkle@mit.edu

oliva@mit.edu

alvarez@wjh.harvard.edu

tfbrady@mit.edu

